Matriksinternal eksternal ini dikembangkan dari model General Electric (GE-Model). Retrenchment strategy (sel 3, 6, dan 9) adalah usaha memperkecil mengurangi usaha yang dilakukan perusahaan. Jika perusahaan tersebut memilih strategi konsentrasi, dia dapat tumbuh melalui integrasi (integration) horizontal maupun vertikal, baik secara QandAis a simple website that allows anyone to ask a question or answer a question. That's it! Dalambentuk matriks, transformasi rotasi di atas dapat dituliskan sebagai berikut. Jika kita lanjutkan dengan mengalikan kedua matriks di atas, akan diperoleh bentuk sebagai berikut. Perhatikan bahwa masing-masing komponen matriks di atas merupakan rumus trigonometri dari penjumlahan dua sudut. Jika disederhanakan akan menjadi bentuk sebagai BeberapaBentuk Matriks Matriks segi (square matrix): Matriks yang banyaknya baris sama dengan banyaknyakolom. Elemen a 11, a 22, , a nn disebut elemen diagonal utama matriks A. Matriks segitiga atas (upper triangular matrix): Matriks segi yang semua elemen dibawah diagonal utamanya nol. Matriks segitiga bawah (lower triangular matrix): Matriks segi yang semua elemen Tentukanhasil kali dari matriks A dan B jika matriksnya sebagai berikut: Contoh 3. Tentukan hasil kali dari matriks A dan B jika matriksnya sebagai berikut:$\mathbf{A}=\begin{bmatrix} 3 &5 &2 \end{bmatrix}, \mathbf{B}=\begin{bmatrix} 3\\ 8\\ 1 \end{bmatrix}$ Jawab: Contoh 4. Jika di berikan matriks P dan matriks Q seperti di bawah ini HpHkIs. MathAdvanced MathAdvanced Math questions and answersJika matriks A=[a,2,3],[1,a,4],[a,2,5] merupakan matriks singular, maka tentukan nilai a!Question Jika matriks A=[a,2,3],[1,a,4],[a,2,5] merupakan matriks singular, maka tentukan nilai a!Jika matriks A=[a,2,3],[1,a,4],[a,2,5] merupakan matriks singular, maka tentukan nilai a!Expert AnswerWho are the experts?Experts are tested by Chegg as specialists in their subject area. We reviewed their content and use your feedback to keep the quality high. matriks yang dikalikan dengan matriks identitas, hasilnya matriks itu membantu ^^ cuma mau menambahkan jika diubah menjadi desimal menjadi. -0,5 1,25 bawahnya -0,5 0,75. MatematikaALJABAR Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Diketahui matriks A = 3 2 2 2 dan B = 1 2 1 3. Determinan matriks AB adalah ....Determinan Matriks ordo 2x2Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo konferensi sini terdapat soal sebagai berikut diketahui matriks A dan B kemudian determinan matriks AB adalah kita ketahui perkalian dua matriks yaitu jika matriks A B C D jika pqrs maka = a p + BR + b c + d r c + d s kemudian jika matriks A = abcd maka determinan matriks A = ad bc, maka matriks AB = matriks 3 2 2 2 * 113 = 3 * 1 + 2 * 13 * 2 + 2 * 32 * 1 + 2 * 12 * 2 + 2 * 3 = matriks 5 12 4 10 kemudian determinan AB = 5 kali 10 Min 4 x 12 = 50 Min 48 = 2determinan matriks a b = 2 yaitu B sampai jumpa di soal berikutnya Kelas 11 SMAMatriksOperasi Pada MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoPada tahun ini kita diminta untuk menentukan transpose dari matriks a pangkat 2 di mana matriks yaitu 32 - 4 dan minus 2. Nah disini kita cari dulu matriks a pangkat dua artinya matriks a pangkat dua ini ini = matriks A dikali dengan matriks itu sendiri nah rumus dari perkalian matriks itu seperti ini jadi kita lihat disini untuk posisi baris pertama kolom pertama ini kita kalikan baris pertama pada materi ini kita kalikan dengan kolom pertama pada matriks ini jadi a dikali P seperti ini kemudian kita tambahkan dengan b dikali R seperti ini. Nah begitu juga untuk baris pertama kolom rumahnya ini kita kalikan baris pertama pada materi ini kita kalikan dengan kolom kedua pada matriks ini kemudian baris kedua kolom pertamanya juga seperti ini kita kalikanDua di sini dengan kolom pertama pada matriks ini Kemudian untuk baris kedua kolom kedua sama di sini ada tambah jadi baris kedua kolom kedua kita kali baris ke-2 di sini kita kalikan dengan kolom kedua di sini. Nah, jadi langsung saja kita ke matriks A x matriks A itu sama dengan 32 - 4 - 2 kita kalikan dengan 32 - 4 - 2. Nah. Berdasarkan rumus ini kita kalikan adik Ali artinya 3 kali 3 ini = 9 kemudian kita tambah dengan 2 dikali minus 4 yaitu minus 8 jadi di sini - 8 sekarang untuk baris pertama kolom kedua Jadi kita kalikan ini kita kalikan ini dengan ini berdasarkan rumus ini tadi Aki di tambah BS jadi kita kalikan3 dikali 2 jadi di sini 6 kemudian 2 dikali minus 2 itu - 4. Jadi di sini ditambah dengan minus 4. Nah, begitu juga caranya untuk baris ke-2 di baris kedua kolom pertama kita kalikan baris kedua di sini dengan kolom pertama di sini jadinya yaitu minus 4 dikali 3 di sini - 12 kemudian ditambah dengan minus 2 dikali minus 4 ini = positif 8 jadi di sini ditambah 8 Nah sekarang baris kedua kolom kedua kita kalikan baris kedua dari sini kita kalikan dengan kolom 2 di sini jadinya itu minus 4 dikali 2 di sini - 8 kemudian minus 2 dikali minus 2 itu 4 jadi di sini ditambah 4 nah. Sekarang kita hitung jadi 9 ditambah minus 8 ini artinya 9 dikurang 8 di sini 1 kemudian 6 ditambah minus 4 Ini hasilnya sama dengan 2 kemudian minus 12 ditambah 8 ini sama dengan minusKemudian sekarang minus 8 ditambah 4 ini juga = minus 4 nah jadi kita peroleh a ^ 2 nya yaitu 12 - 4 - 4. Nah sekarang matriks a pangkat dua ini akan kita transpose jadi untuk melakukan transport misal kita punya matriks A = A B C D Nah jika kita transpos kan matriks ini jadi simbol yaitu a t a pangkat n seperti ini maka baris kita tukar dengan kolom jadi baris menjadi kolom di sini Bu Risma itu AB jadi-jadi kolom di sini A B kemudian garis TD ini jadi kolom juga jadi di sini CD jadi kita tukar seperti itu jadi matriks ini jadi apa kat2 transpose ini = a ^ 2 transpose ini sama dengan kita tukar 12 ini jadi kolom jadi di sini 12undian baris kedua ini juga jadi kolom kedua jadi di sini minus 4 kemudian di sini minus 4 jadi kita peroleh matriks a pangkat 2 transposenya itu sama dengan 1 - 42 - 4 jadi jawa untuk kali ini yaitu Eko oke sekian sampai ketemu di soal-soal cutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Penjumlahan dan Pengurangan Matriks Catatan Untuk materi dasar tentang matriks, silakan buka di materi Matriks Dasar – Pengertian, Jenis, Transpose, dsb. Dua matriks atau lebih, dapat dijumlakan hanya jika memiliki ordo yang sama. Penjumlahan dilakukan dengan menjumlahkan elemen-elemen yang berposisi sama. Contoh Jika dan , maka Sama halnya dengan penjumlahan, pengurangan dapat dilakukan hanya jika dua matriks atau lebih, memiliki ordo yang sama. Pengurangan dilakukan terhadap elemen-elemen yang berposisi sama. Contoh Jika dan , maka Sifat dari penjumlahan dan pengurangan matriks A + B = B + A A + B + C = A + B + C A – B ≠ B – A Perkalian Matriks Matriks dapat dikalikan dengan sebuah bilangan bulat atau dengan matriks lain. Kedua perkalian tersebut memiliki syarat-syarat masing-masing. Perkalian Matriks dengan bilangan bulat Suatu matriks dapat dikalikan dengan bilangan bulat, maka hasil perkalian tersebut berupa matriks dengan elemen-elemennya yang merupakan hasil kali antara bilangan dan elemen-elemen matriks tersebut. Jika matriks A dikali dengan bilangan r, maka . Contoh Jika dan bilangan r = 2, maka Perkalian matriks dengan bilangan bulat dikombinasikan dengan penjumlahan atau pengurangan matriks dapat dilakukan pada matriks dengan ordo sama. Berikut sifat-sifat perkaliannya rA + B = rA + rB rA – B = rA – rB Perkalian dua matriks Perkalian antara dua matriks yaitu matriks A dan B, dapat dilakukan jika jumlah kolom A sama dengan jumlah baris B. Perkalian tersebut menghasilkan suatu matriks dengan jumlah baris sama dengan matriks A dan jumlah saman dengan matriks B, sehingga Elemen-elemen matriks merupakan penjumlahan dari hasil kali elemen-elemen baris ke-i matriks A dengan kolom ke-j matiks B. Berikut skemanya Misalkan matriks A memiliki ordo 3 x 4 dan matriks B memiliki ordo 4 x 2, maka matriks C memiliki ordo 3 x 2. Elemen C pada baris ke-2 dan kolom ke-2 atau a22 diperoleh dari jumlah hasil perkalian elemen-elemen baris ke-2 matriks A dan kolom ke 2 matriks B. Contoh dan maka Perlu diingat sifat dari perkalian dua matriks bahwa A x B ≠ B x A Sebagai pembuktian, diketahui dan maka Terbukti bahwa A x B ≠ B x A. Ada sifat-sifat lain dari perkalian matriks dengan bilangan atau dengan matriks lain, sebagai berikut kAB = kAB ABC = ABC = ABC AB + C = AB + AC A + BC = AC + BC Determinan Matriks Determinan dari suatu matriks A diberi notasi tanda kurung, sehingga penulisannya adalah A. Determinan hanya bisa dilakukan pada matriks persegi. Determinan matriks ordo 2×2 Jika maka determinan A adalah Determinan matriks ordo 3×3 aturan Sarrus Jika maka determinan A adalah = aei + bfg + cdg – ceg – afh – bdi Determinan matriks memiliki sifat-sifat berikut 1. Determinan A = Determinan AT 2. Tanda determinan berubah jika 2 baris/2 kolom yang berdekatan dalam matriks ditukar 3. Jika suatu baris atau kolom sebuah determinan matriks memiliki faktor p, maka p dapat dikeluarkan menjadi pengali. 4. Jika dua baris atau dua kolom merupakan saling berkelipatan, maka nilai determinannya adalah 0. 5. Nilai determinan dari matriks segitiga atas atau bawah adalah hasil kali dari elemen-elemen diagonal saja. Invers Matriks Suatu matriks A memiliki invers kebalikan jika ada matriks B yang dapat membentuk persamaan AB = BA = I, dengan I adalah matriks identitas. Invers dari suatu matriks berordo 2 x 2 seperti dapat dirumuskan sebagai Invers matriks memiliki sifat-sifat berikut AA-1 = A-1A = I A-1-1 = A AB-1 = B-1A-1 Jika AX = B, maka X = A-1B Jika XA = B, maka X = BA-1 Contoh Soal Matriks dan Pembahasan Contoh Soal 1 Suatu perkalian matriks menghasilkan matriks nol. Tentukan nilai x yang memenuhui persamaan tersebut! Pembahasan Maka nilai x yang memenuhi adalah x1 = 2 dan x2 = 3. Contoh Soal 2 Jika matriks dan saling invers, tentukan nilai x! Pembahasan Diketahui bahwa kedua matriks tersebut saling invers, maka berlaku syarat AA-1 = A-1A = I. Sehingga Sehingga pada elemen baris ke-1 kolom ke-1 memiliki persamaan 9x – 1 – 7x = 1 9x – 9 – 7x = 1 2x = 10 x = 5 Artikel Matriks – Perkalian, Determinan, Invers, Rumus & Contoh Soal Kontributor Alwin Mulyanto, Alumni Teknik Sipil FT UI Materi lainnya Pengertian, Rumus, dan Operasi Vektor Persamaan Kuadrat Trigonometri

jika matriks a 2 3